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Abstract. The problem of planning and scheduling chemotherapy treat-
ments in oncology clinics is a complex problem, given that the solution
has to satisfy (as much as possible) several requirements such as the
cyclic nature of chemotherapy treatment plans, and the availability of
resources, e.g. treatment time, nurses, and pharmacy quantities. At the
same time, realizing a satisfying schedule is of upmost importance for
obtaining the best health outcomes.

In this paper we present a solution to the problem based on Answer Set
Programming (ASP), that recently proved to be a consistent methodol-
ogy for solving complex scheduling problems involving optimization. Re-
sults of an experimental analysis, conducted on benchmarks with realistic
sizes and parameters, show that ASP is a suitable solving methodology
also for this important scheduling problem.

1 Introduction

The Chemotherapy Treatment Scheduling (CTS) [29–31, 35] problem consists
of computing a schedule for patients requiring chemotherapy treatments. The
CTS problem is a complex problem for oncology clinics since it involves multi-
ple resources and aspects, including the availability of nurses, chairs, and drugs.
Chemotherapy treatments have a cyclic nature, where the number and the du-
ration of each cycle depend on the different types of cancer and the stage of the
disease. Moreover, treatments may have different priorities that must be taken
into account for preparing a solution. A proper solution to the CTS problem
is thus crucial for improving the degree of satisfaction of patients and nurses,
and for a better management of resources. Various studies, also in the context
of the COVID19 emergency [32, 36], have shown how delays in cancer surgery
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and treatment have a significant adverse impact on patient survival. This im-
pact varies depending on the aggressiveness of the cancer, thus stressing the
importance of developing a model capable of efficiently prioritize patients.

Complex combinatorial problems, possibly involving optimizations, such as
the CTS problem, are usually the target applications of AI languages and tools
such as Answer Set Programming (ASP). As a matter of fact, ASP has been suc-
cessfully employed for solving hard combinatorial problems in several research
areas, including Artificial Intelligence [8, 9, 18], Bioinformatics [20], Hydroinfor-
matics [22], and it has been also employed to solve many scheduling problems [14,
26, 34, 1, 15, 16, 5, 6, 19, 8], and in industrial applications (see, e.g., [2, 17]). The
success of ASP is due to different factors, including a simple but rich syntax [12],
which includes optimization statements as well as powerful database-inspired
constructs like aggregates, an intuitive semantics [10], and the availability of
efficient solvers (see, e.g., [4, 23, 33, 25, 3]).

In this paper, we propose the first ASP encoding for solving the CTS prob-
lem, and then we tested our solution by experimenting with several instances
simulating real-world scenarios. Results obtained using the state-of-the-art ASP
solver clingo [24] show that ASP is a suitable solving methodology for the CTS
problem.

To summarize, the main contributions of this paper are the following:

• We provide an ASP encoding for solving the complete CTS problem (Sec-
tion 4).
• We generated several instances simulating real-world scenario and conducted

an experimental analysis assessing the good performance of our solution
(Section 5).
• We analyze related literature (Section 6).

The paper is completed by Section 2, which contains needed preliminaries
about ASP, by an informal description of the CTS problem in Section 3, and by
conclusions and possible topics for future research in Section 7.

2 Background on ASP

Answer Set Programming (ASP) [10] is a programming paradigm developed in
the field of nonmonotonic reasoning and logic programming. In this section we
overview the language of ASP. More detailed descriptions and a more formal
account of ASP, including the features of the language employed in this paper,
can be found in [10, 13]. Hereafter, we assume the reader is familiar with logic
programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings
starting with uppercase letter and constants are non-negative integers or strings
starting with lowercase letters. A term is either a variable or a constant. A
standard atom is an expression p(t1, . . . , tn), where p is a predicate of arity n and
t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants.
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A ground set is a set of pairs of the form 〈consts :conj〉, where consts is a list of
constants and conj is a conjunction of ground standard atoms. A symbolic set
is a set specified syntactically as {Terms1 : Conj1; · · · ;Termst : Conjt}, where
t > 0, and for all i ∈ [1, t], each Termsi is a list of terms such that |Termsi| =
k > 0, and each Conji is a conjunction of standard atoms. A set term is either a
symbolic set or a ground set. Intuitively, a set term {X :a(X, c), p(X);Y :b(Y,m)}
stands for the union of two sets: the first one contains the X-values making the
conjunction a(X, c), p(X) true, and the second one contains the Y -values making
the conjunction b(Y,m) true. An aggregate function is of the form f(S), where
S is a set term, and f is an aggregate function symbol. Basically, aggregate
functions map multisets of constants to a constant. The most common functions
implemented in ASP systems are the following:

• #count , number of terms;
• #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate function,
≺ ∈ {<,≤, >,≥, 6=,=} is a comparison operator, and T is a term called guard.
An aggregate atom f(S) ≺ T is ground if T is a constant and S is a ground
set. An atom is either a standard atom or an aggregate atom. A rule r has the
following form:

a1 ∨ . . . ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are stan-
dard atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its negation
not a. The disjunction a1 ∨ . . . ∨ an is the head of r, while the conjunction
b1, . . . , bk, not bk+1, . . . , not bm is its body. Rules with empty body are called
facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global
variable of r. An ASP program is a set of safe rules, where a rule r is safe if the
following conditions hold: (i) for each global variable X of r there is a positive
standard atom ` in the body of r such that X appears in `; and (ii) each lo-
cal variable of r appearing in a symbolic set {Terms : Conj} also appears in a
positive atom in Conj .

A weak constraint [11] ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l]

where w and l are the weight and level of ω, respectively. (Intuitively, [w@l] is
read as ”weight w at level l”, where weight is the “cost” of violating the condition
in the body of w, whereas levels can be specified for defining a priority among
preference criteria). An ASP program with weak constraints is Π = 〈P,W 〉,
where P is a program and W is a set of weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground
if no variables appear in it.
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Semantics. Let P be an ASP program. The Herbrand universe UP and the
Herbrand base BP of P are defined as usual. The ground instantiation GP of
P is the set of all the ground instances of rules of P that can be obtained by
substituting variables with constants from UP .

An interpretation I for P is a subset I of BP . A ground literal ` (resp.,
not `) is true w.r.t. I if ` ∈ I (resp., ` 6∈ I), and false (resp., true) otherwise. An
aggregate atom is true w.r.t. I if the evaluation of its aggregate function (i.e.,
the result of the application of f on the multiset S) with respect to I satisfies
the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t.
I whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules of a program. Given a
ground program GP and an interpretation I, the reduct [21] of GP w.r.t. I is the
subset GIP of GP obtained by deleting from GP the rules in which a body literal
is false w.r.t. I. An interpretation I for P is an answer set (or stable model) for
P if I is a minimal model (under subset inclusion) of GIP (i.e., I is a minimal
model for GIP ) [21].

Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π
extends from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the
instantiation of Π; a constraint ω ∈ GW is violated by an interpretation I if all
the literals in ω are true w.r.t. I. An optimum answer set for Π is an answer set
of GP that minimizes the sum of the weights of the violated weak constraints in
GW in a prioritized way.

3 Problem Description

In this section, we provide an informal description of the CTS problem and its
requirements.

The CTS problem consists of computing a schedule for chemotherapy pa-
tients. Chemotherapy treatment plans have a cyclic nature, following a schema
that depends on the required treatment and each different treatment session
requires different drugs to be dispensed. The input of the problem is a list of
registrations, corresponding to treatment sessions for the patients, where each
registration includes:

• the drugs to be dispensed, with a maximum of 3 drugs per session;
• the priority level of the registration, where 1, 2, and 3 correspond to regis-

trations with high, medium, and low priority, respectively; and
• the day before which the treatment must start, if the registration corresponds

to the first session of the patient, or the number of waiting days before the
subsequent session, otherwise.

Registrations range over a period of time of 14 days, where each day is
composed by 8 time slots. Then, each hospital has c available chairs, each chair
can be assigned to at most ntreat treatments, n nurses working in the hospital,
k patients that a nurse can visit per time slot, and a maximum quantity of
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available drugs for each day. In our setting, c, ntreat, n, and k are fixed and set
to 15, 10, 5, and 4, respectively.

The output of the problem is a schedule of registrations to time slots accord-
ing to the following requirements:

• the first session treatment must be scheduled before the date reported in the
registration;

• the subsequent sessions must be scheduled exactly after the number of wait-
ing days specified in the registration;

• each chair can be used by only one patient for each time slot;

• if the treatment requires more than one time slots, then the patients must
always use the same chair;

• each nurse can assist from 1 to k patients for each time slot;

• each chair can be assigned to at most ntreat treatments;

• treatments cannot exceed the maximum quantity of drugs available for each
day;

• treatments must be scheduled as soon as possible, therefore it is not possible
that a day has no scheduled registration and subsequent days have scheduled
registrations;

• since some drugs might require a long time to be prepared, treatments cannot
be scheduled at the latest available time slot.

Moreover, as a further requirement, registrations with the highest priorities
should be scheduled before other registrations.

4 ASP Encoding for the CTS problem

Starting from the specifications in the previous section, here we present the
ASP encoding, based on the input language of clingo [23], for the scheduling
problem.

Data Model. The input data is specified by means of the following atoms:

• Instances of reg(REGID,PRIOR,M,DUEDATE,TID1,TID2,TID3) represent the
registrations, characterized by an id (REGID), a priority score (PRIOR, we
recall that 1 is the highest priority and 3 is the lowest priority), a value
indicating an internal order of treatments (M, where 0 indicates the first
treatment, 1 the second treatment, etc.), the date by which the treatments
must be carried out (DUEDATE), the ids of treatments (TID1, TID2, TID3)
that must be carried out.

• Instances of mss(DAY,TS) represent the available time slots for each day,
e.g., mss(1,1), ..., mss(1,8) denote that 8 slots are available for the day 1,
where each slot has a fixed duration (30 minutes or 1 hour) depending on
the scenario.



6 Dodaro et al.

1 {x(RID,DAY,TS,TID1,TID2,TID3,PRIOR,0) : mss(DAY,TS), DAY <= DUEDATE} = 1 :-
reg(RID,PRIOR,0,DUEDATE,TID1,TID2,TID3).

2 {x(RID,DAY1+DAY2,TS,TID1,TID2,TID3,0,M) : mss(DAY1+DAY2,TS)} = 1 :- x(RID,DAY1,_,_,_,_,_,N),
reg(RID,_,M,DAY2,TID1,TID2,TID3), M=N+1, mss(DAY1+DAY2,_).

3 res(RID,DAY,TS..TS+D1-1,NCHAIR,NNURSE) :- x(RID,DAY,TS,TID1,_,_,_,_),
type(TID1,_,NCHAIR,NNURSE,D1).

4 res(RID,DAY,(TS+D1)..(TS+D1+D2-1),NCHAIR,NNURSE) :- x(RID,DAY,TS,TID1,TID2,_,_,_),
type(TID1,_,_,_, D1), type(TID2,_,NCHAIR,NNURSE,D2).

5 res(RID,DAY,(TS+D1+D2)..(TS+D1+D2+D3-1),NCHAIR,NNURSE) :- x(RID,DAY,TS,TID1,TID2,TID3,_,_),
type(TID1,_,_,_,D1), type(TID2,_,_,_,D2), type(TID3,_,NCHAIR,NNURSE,D3).

6 {chair(ID,RID,DAY,TS) : chair(ID)} = NCHAIR :- res(RID,DAY,TS,NCHAIR,_).
7 {nurses(ID,RID,DAY,TS) : nurse(DAY,ID)} = NNURSES :- res(RID,DAY,TS,_,NNURSES).
8 :- #count{RID : chair(ID,RID,DAY,TS)} > 1, chair(ID), mss(DAY,TS).
9 :- #count{RID : nurses(ID,RID,DAY,TS)} > k, nurse(DAY,ID), mss(DAY,TS).

10 :- chair(ID1,RID,DAY,TS), chair(ID2,RID,DAY,TS+1), ID1 < ID2.
11 :- #sum{NCHAIR,RID : res(RID,DAY,TS,NCHAIR,_)} > c, mss(DAY,TS).
12 :- T1 = #max{TS1 : res(_,DAY,TS1,_,_)}, T2 = #max{TS2: mss(DAY,TS2)}, T1 > T2.
13 :- #count{RID: chair(ID,RID,DAY,_)} > ntreat, mss(DAY,_), chair(ID).
14 :- T = #max{TS: mss(DAY,TS)}, x(_,DAY,T,_,_,_,_,_).
15 :- not x(_,DAY,_,_,_,_,_,_), x(_,DAY+1,_,_,_,_,_,_), mss(DAY,_).
16 :- #count{RID:x(RID,DAY,_,TID,_,_,_,_); RID:x(RID,DAY,_,_,TID,_,_,_);

RID:x(RID,DAY,_,_,_,TID,_,_)} > MAX/Q, mss(DAY,_), type(TID,Q,_,_,_), Q != 0,
drug(TID,MAX).

17 :∼ x(RID,DAY,_,_,_,_,1,0). [DAY@4,RID]
18 :∼ x(RID,DAY,_,_,_,_,2,0). [DAY@3,RID]
19 :∼ x(RID,DAY,_,_,_,_,3,0). [DAY@2,RID]
20 :∼ x(_,DAY,_,_,_,_,_,0). [DAY@1]

Fig. 1. ASP encoding of the CTS problem

• Instances of type(TID, QUANT, NCHAIRS, NNURSES, D) represent for each
treatment, denoted by its identifier TID, the amount of drugs (QUANT), the
number of chairs (NCHAIRS), the number of nurses (NNURSES), and the dura-
tion expressed (D) required by the treatment.

• Instances of drug(TID,MAX) represent for each treatment, denoted by its
identifier TID, the maximum availability of the required drug for each day
(MAX).

• Instances of chair(ID) represent the available chairs, with its identifier ID.

• Instances of nurse(ID,D) represent the nurses available in a specific day,
where ID is the identifier of the nurse and D is the day.

Moreover, we also take advantage of three constants, namely c, k, and ntreat,
corresponding to the ones described in the previous section.

The output is an assignment represented by atoms of the form

x(RID,DAY,TS,TID1,TID2,TID3,PRIOR,M)

where the intuitive meaning is that the registration with id RID is assigned to
the day DAY and its starting time slot is TS, whereas the terms TID1, TID2, TID3,
PRIOR, and M are the ones of reg(REGID,PRIOR,M,DUEDATE,TID1,TID2,TID3),
described above.



Chemotherapy treatment scheduling via Answer Set Programming 7

Table 1. Drugs availability for each groups of patients in each day in scenario α.

Number of patients Drug A Drug B Drug C

60 400 2000 600
80 500 2500 800
100 700 3200 1150

Encoding. The related encoding is shown in Figure 1, and is described in the
following. To simplify the description, we denote as ri the rule appearing at the
line i of Figure 1.

Rules r1 and r2 guess an assignment for the registrations to a day DAY and
a time slot TS, where r1 is used to guess the first day of the treatment and r2
the subsequent days. Rules r3, r4, and r5 are auxiliary rules which are used for
deriving atoms of the form res(RID,DAY,H,NCHAIR,NNURSE) starting from the
assignment derived in rules r1 and r2. Basically, those atoms include, for each
registration of a given day, all the time slots where the registration is assigned,
and the number of chairs and nurses required by the registration. Then, rules r6
and r7 guess the chairs and the nurses that must be assigned to each selected
registration. Subsequent rules, from r8 to r16, are used to check that the schedule
fulfills all the requirements. In particular, rules r8 and r9 ensure that each chair
is assigned to at most one patient and each nurse can visit at most k patients for
each time slot, respectively. Rule r10 enforces that a patient has always the same
chair until the treatment is not finished. Rule r11 is used to guarantee that the
number of assigned chairs does not exceed the number of available chairs, denoted
with the constant c. Rules r12 and r13 ensure that each treatment does not exceed
the allotted time expressed by instances of mss and the number of treatments
assigned to a chair does not exceed the maximum number of treatments (denoted
with the constant ntreat), respectively. Rule r14 guarantees that treatments start
before the last available slot of mss. Rule r15 ensures that if a day has at least
one scheduled registration, then all previous days must also have at least one
scheduled registration, whereas rule r16 is used to enforce that the maximum
availability of the drugs is not exceeded for each day. Then, weak constraints
from r17 to r19 are used to optimize the schedule of the registrations according
to their priority. In particular, registrations with the highest priority must be
scheduled before other registrations. Note that this optimization is considered
for the first day of treatment only. Finally, weak constraint r20 is used to schedule
the treatments as soon as possible. Note that r20 is somehow subsumed by weak
constraints from r17 to r19, however we find out that adding this weak constraints
slightly improves the overall performance in our experiments.

5 Experimental Results

In this section we report the results of an empirical analysis of the CTS problem.
Data have been randomly generated using parameters inspired by real-world
data. In this way we can simulate different scenarios and use them to test our
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Table 2. Drugs availability for each groups of patients in each day in scenario β.

Number of patients Drug A Drug B Drug C

60 350 1850 550
80 400 2250 700
100 550 3000 900

Table 3. Schema of the treatment followed by every patient, inspired by a sample
chemotherapy regimen [37]

Day Drugs Dose Duration

1 A-B-C 20 mg/m2, 100 mg/m2, 30 units 1, 2, 1 time slot
2-5 A-B 20 mg/m2, 100 mg/m2 1, 2 time slot
6-7 Rest
8 C 30 units 1 time slot

encoding. The experiments were run on a AMD Ryzen 5 2600 CPU @ 3.40GHz
with 7.6 GB of physical RAM. The ASP system used was clingo [23], using
arguments –restart-on-model for a faster optimization and –parallel-mode 12 for
parallel execution. The time limit was set to 300 seconds.

5.1 CTS benchmarks

The generated benchmarks vary for the number of patients and drug availability
but they all consider a 14-days calendar. Two different scenarios were considered.
The first one (scenario α) is characterized by an amount of drugs that allow the
system to use the available chairs in a high percentage. For the second one
(scenario β), we severely reduced the number of available drugs, to test the
encoding in a situation in which the drugs become a limitation for the system
and then the usage of the chairs is reduced. Each scenario was tested with 10
different randomly generated inputs for each of the different groups of patients:
60, 80, and 100. The characteristics of the tests are the following:

• 2 different benchmarks, comprising a planning period of 14 working days, and
different numbers of available drugs, as reported in Table 1 and in Table 2,
for each group of patients;

• 3 different types of drugs that are assigned to the patients following the
schema reported in Table 3;

• For each patient, there are 6 different registrations, each corresponding to
a day of treatment, following the schema reported in Table 3, with the first
one having a randomly generated priority and a due date of the treatment
with a value inside a range of days based on the priority. In this way, we
simulate the common situation where a manager takes a list of patients with
different priorities and tries to schedule every patient as soon as possible,
taking into account the priority.

The priorities of the first registration have been generated from uneven distribu-
tion of three possible values (with weights respectively of 0.20, 0.40, and 0.40 for
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Table 4. Parameters for the random generation of the scheduler input.

Patients Scenario
Num. of Priority 1

mean (std)
Num. of Priority 2

mean (std)
Num. of Priority 3

mean (std)

60 α 12.9 (2.5) 24 (4.82) 23 (4.65)
80 α 17.3 (1.48) 32.6 (3.41) 30.1 (3.69)
100 α 19.5 (3.26) 38 (3.68) 42.5 (4.67)
60 β 11.9 (2.80) 24.4 (4.60) 23.7 (4.60)
80 β 16.8 (1.66) 32.6 (3.23) 30.6 (3.69)
100 β 19.5 (3.26) 38 (3.68) 42.5 (4.67)

Table 5. Average chair occupation (in % over the total available) for the scenario α.

Day

Patients 0 1 2 3 4 5 6 7 8 9 10 11 12 13

60 66 64 62 61 61 57 38 59 57 57 41 36 49 29
80 83 82 81 80 80 77 52 75 68 67 46 43 68 50
100 92 94 93 95 97 86 67 89 83 89 71 76 90 72

registrations having priority 1, 2, and 3, respectively). Depending on the priority
the due date of the treatment is randomly assigned from three different ranges:
[1,6) for priority 1, [6,11) for priority 2, and [11,15) for priority 3, respectively.

The parameters of the test have been summed up in Table 4. In particular, for
each group of patients (60, 80 and, 100), we reported the mean and the standard
deviation of the number of patients with priority 1, 2 and 3, respectively.

5.2 Results

The encoding was tested on each scenario (α, i.e. drugs abundance, and β, i.e.
drugs scarcity) and with each number of patients (60, 80 or 100). We summarized
our results in Tables 5 and 7 for scenario α and Tables 6 and 8 for scenario β,
respectively. In each of these tables we report the average for each day, calculated
over 10 tests with randomly generated input, of the infusion chairs occupation
and the usage of each treatment drug as a percentage over the maximum quantity
that could be produced in that day. As a general observation, these results show
that our solution is capable to reach a good level of chairs occupation and drugs
usage, especially in the first half of the planning period. In the second half,
the efficiency decreases for the simple reason that many patients have either
finished their treatments or are in their later stages, which are less time and
drug consuming (see Table 3). In a real-world application, a new schedule with
new patients would actually be planned such that the second half of the first
schedule would overlap with first half of the second schedule, thus having some
slots pre-occupied and filling all spaces left empty.

Finally, we present some more detailed results achieved on one instance of
scenario α. In particular, we present in Fig. 2 the occupation of a chair during
the planning period, while in Fig. 3 we show the drug usage. Fig. 4 reports
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Table 6. Average chair occupation (in % over the total available) for the scenario β.

Day

Patients 0 1 2 3 4 5 6 7 8 9 10 11 12 13

60 56 55 55 56 56 53 39 53 48 50 45 41 51 46
80 67 65 70 70 71 63 54 68 68 64 61 63 69 68
100 90 91 92 92 93 87 64 89 80 81 73 75 89 78

Table 7. Average drug usage (in % over the available quantity) for the scenario α.

Day
Patients Drug 0 1 2 3 4 5 6 7 8 9 10 11 12 13

60
A 99 97 92 92 91 84 61 93 91 91 63 56 74 50
B 99 95 93 91 91 85 56 87 83 84 60 53 77 41
C 99 96 93 94 94 88 57 86 84 86 64 54 67 45

80
A 100 98 96 95 94 91 66 90 83 81 54 50 83 62
B 100 97 95 94 94 92 61 92 78 80 58 54 80 60
C 93 95 97 96 96 90 59 81 80 75 50 45 77 56

100
A 83 83 85 87 89 77 57 75 71 77 64 68 77 59
B 86 86 83 84 86 78 66 86 80 86 67 70 85 67
C 72 75 77 79 81 69 48 66 61 66 53 57 70 58

the day the first session of each treatment, subdivided by patient priority, was
scheduled: as we can see priority 1 patients begin their treatment at the first
day available, then priority 2 are obviously favoured over priority 3 patients. In
Fig. 5 we show the aggregated number of patients treated per day: note that
this number can significantly vary because the duration of the sessions can be
very different depending on the phase of the treatment.

6 Related Work

In this section we review related literature devoted to acknowledging some of the
most interesting works published in the latest years which dealt with the CTS
problem.

Sevinc et al. [35] addressed the CTS problem through a two-phase approach.
In the first one an adaptive negative-feedback scheduling algorithm is adopted
to control the load on the system, while in the second phase two heuristics
based on the ‘Multiple Knapsack Problem’ have been evaluated to assign pa-
tients to specific infusion seats. The overall design has been put to test at a local
chemotherapy center and has yielded good results for patient waiting times,
orderly execution of chemotherapy regimen and utilization of infusion chairs.
Huang et al. [30] developed and implemented a model to optimize safety and
efficiency in terms of staffing resource violations measured by nurse-to-patient
ratios throughout the workday and at key points during treatment to decide
when to schedule patients according to their visit durations. The optimization
model was built using Excel Solver. Hahn-Goldberg et al. [29] addressed in partic-
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Table 8. Average drug usage (in % over the available quantity) for the scenario β.

Day
Patients Drug 0 1 2 3 4 5 6 7 8 9 10 11 12 13

60
A 96 90 90 92 93 90 70 89 87 94 83 76 90 81
B 91 90 90 91 91 86 66 85 76 78 71 67 82 76
C 92 93 94 93 93 85 63 91 79 84 75 64 84 70

80
A 100 96 97 98 100 91 84 97 97 97 95 94 99 98
B 89 84 95 94 95 86 70 92 92 84 81 84 91 92
C 86 88 95 94 95 80 72 91 91 87 76 81 95 87

100
A 98 95 94 96 98 96 75 95 91 92 82 85 92 85
B 90 92 94 93 94 87 64 90 81 82 71 73 91 78
C 90 94 93 94 95 85 60 88 76 77 73 74 90 80

Fig. 2. Chair occupation for each day of the planning period (in % over the total
available time) for scenario α schedules with 60 (top left), 80 (top right) or 100 patients
(bottom left).

ular dynamic uncertainty that arises from requests for appointments that arrive
in real time and uncertainty due to last minute scheduling changes through a
proactive template of an expected day in the chemotherapy centre using a de-
terministic optimization model updated, to accommodate last minute additions
and cancellations to the schedule, by a shuffling algorithm. Huggins et al. [31]
presented a mixed-integer programming optimization model developed with the
objective of maximizing resource utilization, while balancing human workload,
in particular taking into account variability in length of treatment, increased
patient demand, and resource limitations.
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Fig. 3. Drugs usage for scenario α schedules with 60 (top left), 80 (top right) and 100
(bottom left) patients.

Fig. 4. Distribution of the first session of each treatment for scenario α with 60 (top
left), 80 (top right) and 100 patients (bottom left). The blue bar indicates the priority
1 patients while the orange and green ones the priority 2 and 3 patients, respectively.
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Fig. 5. Total number of patients treated in each day of the planning period for scenario
α with 60 (top left), 80 (top right) and 100 (bottom left) patients (bottom left).

7 Conclusions and Current Work

In this paper we have employed ASP for solving the CTS problem, and we
then presented the results of an experimental analysis on instances generated
in order to simulate real-world scenarios. The proposed solution and the good
results confirm that ASP is a viable AI tool for solving hard scheduling problems,
mainly due to the available modeling rules and constructs, and availability of
efficient solvers.

Concerning future work, we are currently improving the analysis by investi-
gating with other parameters, e.g. with k = 7, given that a range between 4 and
7 for k is often employed in papers, or with 20 and 40 patients. We also plan
to to include the design, encoding and analysis of a re-scheduling solution, in
case the off-line solution, as proposed in this paper, cannot be fully implemented
for circumstances such as canceled registrations, and the evaluation of heuris-
tics and optimization techniques (see, e.g., [7, 27, 28]) for further improving the
effectiveness of our solution. Finally, we plan to experimentally confront to the
alternative solutions mentioned in the related work section, assuming such so-
lutions are publicly available and the comparison is significant, and to analyse
with real data when they become available.
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